Deep-6DPose: Recovering 6D Object Pose from a Single RGB Image

نویسندگان

  • Thanh-Toan Do
  • Ming Cai
  • Trung Pham
  • Ian Reid
چکیده

Detecting objects and their 6D poses from only RGB images is an important task for many robotic applications. While deep learning methods have made significant progress in visual object detection and segmentation, the object pose estimation task is still challenging. In this paper, we introduce an end-toend deep learning framework, named Deep-6DPose, that jointly detects, segments, and most importantly recovers 6D poses of object instances from a single RGB image. In particular, we extend the recent state-of-the-art instance segmentation network Mask R-CNN with a novel pose estimation branch to directly regress 6D object poses without any post-refinements. Our key technical contribution is the decoupling of pose parameters into translation and rotation so that the rotation can be regressed via a Lie algebra representation. The resulting pose regression loss is differential and unconstrained, making the training tractable. The experiments on two standard pose benchmarking datasets show that our proposed approach compares favorably with the state-of-the-art RGB-based multi-stage pose estimation methods. Importantly, due to the end-to-end architecture, Deep-6DPose is considerably faster than competing multi-stage methods, offers an inference speed of 10 fps that is well suited for robotic applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Best of Both Worlds: Learning Geometry-based 6D Object Pose Estimation

We address the task of estimating the 6D pose of known rigid objects, from RGB and RGB-D input images, in scenarios where the objects are heavily occluded. Our main contribution is a new modular processing pipeline. The first module localizes all known objects in the image via an existing instance segmentation network. The next module densely regresses the object surface positions in its local ...

متن کامل

Real-Time Seamless Single Shot 6D Object Pose Prediction

We propose a single-shot approach for simultaneously detecting an object in an RGB image and predicting its 6D pose without requiring multiple stages or having to examine multiple hypotheses. Unlike a recently proposed single-shot technique for this task [10] that only predicts an approximate 6D pose that must then be refined, ours is accurate enough not to require additional post-processing. A...

متن کامل

Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation

We present a 3D object detection method that uses regressed descriptors of locally-sampled RGB-D patches for 6D vote casting. For regression, we employ a convolutional auto-encoder that has been trained on a large collection of random local patches. During testing, scene patch descriptors are matched against a database of synthetic model view patches and cast 6D object votes which are subsequen...

متن کامل

DeepIM: Deep Iterative Matching for 6D Pose Estimation

Estimating the 6D pose of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Giv...

متن کامل

Recovering 6D Object Pose: Multi-modal Analyses on Challenges

A large number of studies analyse object detection and pose estimation at visual level in 2D, discussing the effects of challenges such as occlusion, clutter, texture, etc., on the performances of the methods, which work in the context of RGB modality. Interpreting the depth data, the study in this paper presents thorough multi-modal analyses. It discusses the above-mentioned challenges for ful...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.10367  شماره 

صفحات  -

تاریخ انتشار 2010